www.LA-STAR.ru
Лаборатория Нектона 

Главная
Разное
тех. библиотека
Девайсы
Reports
Методичка

Связь


Поиск:


 

 

Главная тех. библиотека Простой индикатор разряда батарей



Для миниатюрной электронной аппаратуры и приборов, питающихся от аккумуляторных батарей или гальванических элементов, весьма полезным устройством является индикатор разрядки источника питания. Такой индикатор позволяет, обнаружив разрядку, своевременно предпринять меры для перезаряда аккумуляторов или замены гальванических элементов. На рис.1 для примера приведены характерные кривые разряда никель-кадмиевых аккумуляторов токами от I=0,2С до I=3С, где С — емкость аккумулятора в амперчасах , из которой видно, что при разрядке на 80...90% напряжение на них падает приблизительно на 0,15 В от номинальной величины 1,25 В. Сходно ведут себя и никель-металло-гидридные аккумуляторы. Что касается обычных марганцево-цинковых или алкалиновых гальванических элементов, то их падение напряжения при той же степени разрядки составляет приблизительно 0,2...0,25 В от номинальных 1,5 В. Исключение составляют лишь литиевые элементы, которые практически до полного разряда сохраняют номинальное напряжение.
См. Рис. 1. Кривые разряда Ni-Cd аккумулятора


Таким образом, для индикации разрядки подавляющего большинства гальванических источников питания достаточно регистрировать уменьшение их напряжения на величину примерно от 150 мВ у одного аккумулятора до 2...2,5 В у батареи из 8...10 гальванических элементов. Обычно такие индикаторы реализуются на основе микросхем, уже включающих в себя компаратор напряжения. В других случаях для этого, как правило, используются операционные усилители, на которых также собирается компаратор. Здесь предлагается индикатор, построенный на цифровой микросхеме. Его компаратор выполнен на КМОП — инверторе, в качестве которого применен базовый элемент микросхемы К561ЛН2. Опорное напряжение Uо подается на вход инвертора, а сравниваемое положительное напряжение источника питания Uи.п. на ножку 14 питания микросхемы. Из характерных кривых на рис.2 видно что в достаточно широкой области вокруг произвольно выбранного номинального значения Uи.п. напряжение переключения инвертора Uп связано с напряжением его питания соотношением Uп = xUи.п., где x = const и x >> 0,4 при переключении инвертора из состояния логической «1» в «0» и x >> 0,6 в обратном случае. Следовательно, с уменьшением напряжения питания при прохождении точки Uи.п. >> 2,5Uо инвертор, выход которого предварительно находился в состоянии «1», будет изменять его на противоположное. Крутизна переходной характеристики инверторов 561 серии при работе на высокоомную нагрузку вполне достаточна для фиксации перепада контролируемого напряжения порядка десятка милливольт.
См. Рис. 2.


Принципиальная схема индикатора разрядки для источников питания с номинальным напряжением в пределах 3...6 В приведена на рис.3. Компаратор выполнен на инверторе DD1.1. Опорное напряжение формируется цепочкой R1, R2, VD1, где VD1 — источник опорного напряжения КА.336-2.5. Часть напряжения, падающего на VD1, а для КА.336-2.5 это 2,48 В, подается на вход DD1.1 через резистор R2, которым устанавливается порог срабатывания компаратора. Нормальное и разряженное состояния источника питания индицируются светодиодами VD2 и VD4 соответственно. Инвертор DD1.2 выполняет функцию буфера, препятствующего уменьшению крутизны переключательной характеристики инвертора при включении светодиода VD2.
См. Рис. 3.


Помимо светового сигнала, разряженное состояние источника индицируется и звуковым сигналом пьезозвонка BQ1, который возбуждается мультивибратором, собранным на инверторах DD1.5, DD1.6. Резистор R7 используется для подстройки частоты мультивибратора под резонансную частоту пьезозвонка. Значение емкости конденсатора С2 дано для случая, когда применен пьезозвонок с резонансной частотой около 3 кГц и выше. Если применяется пьезозвонок с более низкой резонансной частотой, емкость конденсатора С2 следует соответственно увеличить. В противном случае громкость звукового сигнала может оказаться недостаточной. Манипулятор на инверторах DD1.3, DD1.4 формирует импульсы для питания светодиода VD4 и управляет мультивибратором. При указанных на схеме номиналах времязадающей цепочки С1, R6 частота пререключения манипулятора приблизительно равна 3 Гц. Разделительные диоды VD3 и VD5 позволяют последовательно управлять манипулятором и мультивибратором.

Собранный индикатор поключается к любому прибору или устройству просто путем присоединения выводов 7 и 14 микросхемы К561ЛН2 к минусовой и плюсовой шинам питания соответственно. Индикатор работает следующим образом. В исходном состоянии кнопка S1 разомкнута и на входе инвертора DD1.1 присутствует логический «0». Соответственно логический «0» присутствует и на выходе инвертора DD1.2. При этом диод VD3 шунтирует вход инвертора DD1.3 на «землю» и таким образом стопорит манипулятор, на выходе которого также оказывается логический «0», благодаря чему через диод VD5 на «землю» шунтируется и вход инвертора DD1.5 и мультивибратор находится в ждущем режиме. В результате светодиоды VD2 и VD4 не горят и звуковой сигнал отсутствует.

При нажатии на кнопку S1 напряжение питания Uи.п. подается на анод светодиода VD2 и в цепочку формирования опорного напряжения R1, R2, VD1. Если окажется, что Uи.п. велико настолько, что напряжение переключения инвертора DD1.1 из «1» в «0» при данном питании больше чем опорное напряжение, установленное на его входе, то на выходе инвертора DD1.2 сохранится состояние логического «0». При этом манипулятор и, соответственно, мультивибратор останутся в ждущем режиме, а светодиод VD2 загорится, свидетельствуя о нормальном состоянии источника питания. Если же Uи.п. понизится так, что напряжение переключения инвертора DD1.1 из «1» в «0» при данном питании окажется меньше, чем опорное напряжение на его входе , то при нажатии на кнопку S1 инвертор DD1.1 переключится и на выходе инвертора DD1.2 появится логическая «1». В результате светодиод VD2 погаснет, а диод VD3 запрется и запустится манипулятор, формируя импульсы питания светодиода VD4 и управления мультивибратором. Мультивибратор начнет генерировать пачки импульсов. Мигание светодиода VD4 и одновременные звуковые сигналы будут свидетельствовать о разрядке источника питания и необходимости его перезарядки или замены.

Правильно собранное устройство начинает работать сразу. Настройка сводится к установке величины порога срабатывания. Для этого необходимо запитать устройство от регулируемого источника напряжением, которое выбрано в качестве критерия разряда гальванического источника питания. Например, для аккумуляторной батареи из четырех никель-кадмиевых аккумуляторов с номинальным напряжением 5 В это будет приблизительно 4,4 В. Замкнуть кнопку S1, повернуть движок резистора R2 в положение, при котором горит светодиод VD2, и медленно поворачивать его в обратном направлении до момента, когда светодиод VD2 погаснет и замигает светодиод VD4. После этого увеличить напряжение на 0,5...1 В, светодиод VD2 при этом загорится вновь. Затем начать плавно его снижать и зафиксировать величину, при которой светодиод VD2 погаснет опять и снова замигает светодиод VD4. Если полученное значение напряжения переключения будет отличаться от требуемого — процедуру повторить. Производить установку опорного напряжения не как описано выше, а наоборот, добиваясь переключения светодиода VD2 из погашенного состояния, нельзя, поскольку напряжение переключения инвертора из «1» в «0» отличается от напряжения переключения из «0» в «1».

В конструкции в качестве светодиодов VD2 и VD4 использованы АЛ307Г и АЛ307К зеленого и красного цветов, диоды VD3, VD5 — любые, например КД510А или КД522Б. Номиналы резисторов R3, R4 даны для индикатора, работающего с батареей, состоящей из четырех аккумуляторов или гальванических элементов. В индикаторе для батареи из трех элементов с целью избежания потери яркости свечения светодиодов эти резисторы желательно уменьшить до 150 и 470 Ом соответственно.
См. Рис. 4.

Если индикатор предназначен для источника питания с номинальным напряжением больше 6 В, в нем следует использовать более высоковольтный источник опорного напряжения. Так для индикаторов от 6 до 12 В подойдет источник LM336Z-5.0, жестко стабилизирующий опорное напряжение 4.98 В, или какой-нибудь его аналог. Номиналы резисторов R1,R3,R4 необходимо при этом увеличить так, чтобы ток через VD1 находился в пределах 1...2 мА, через VD2 — не более 10 мА, а через VD3 — не более 3 мА. В индикаторе возможно применение и обычных стабилитронов с соответствующей коррекцией величины R1, но точность срабатывания индикатора несколько уменьшится. При разработке какого-либо изделия в него можно заложить индикатор по упрощенной схеме, представленной на рис.4, а оставшиеся инверторы использовать для других нужд. В этом случае о разрядке источника питания будет свидетельствовать только горение светодиода, а о нормальном его состоянии — отсутствие какой-либо реакции индикатора. Возможны и различные промежуточные комбинации. В завершение следует заметить что описанное устройство не требует собственного питания как такового и может использоваться совершенно самостоятельно как некий тестер — пробник, например, для контроля автомобильных аккумуляторов.

Александр Мясников
г. Москва
Источник: shems.h1.ru


 
Рис. 1. Кривые разряда Ni-Cd аккумулятора

 
Рис. 2.

 
Рис. 3.

 
Рис. 4.




 

? К Звездному свету
? Термоэлектрические генераторы: Общая информация
? Инфракрасный диапазон: Документация и статьи
? TSOP17xx
? Инфракрасные протоколы
? кусок даташита
? Эксперименты (altruf)
? Методы и результаты исследования ближнего ИК диапазона. Апрель 2005
? Касательно информационной энтропии
? Таблица частотности букв русского языка
? Разные статьи про обеспечение электропитания в походе
? Андрей Ходкин. Часть 1. Термогенератор Пельтье.
? Андрей Ходкин. Часть 2. Универсальные походные источники электроэнергии.
? Андрей Ходкин. Часть 3. Универсальные походные источники электроэнергии.
? Простой индикатор разряда батарей
? Разводка кабеля UBS = HP iPaq hw 6915 (691x)
? Разрядные кривые литий-ионных аккумуляторов
? Касательно GPS и картографии
? Аэродром Быково карты
? Таблицы Красовского
? Разные полезные статьи
? Теория и практика применения таймера 555. Часть первая.
? EXIF заголовки файлов
? PIC16F630
? стабильность кварцев
? H-мост на мосфетах


НОВОСТИ

перенос #48 08.10.2008
Значительная часть материалов перенесена на www.tegir.ru


Последняя новость #47 19.09.2008
Долгое время не было обновлений и всего такого прочего - из-за того, что создавался сайт объединенной технической группы ТЕГИР [www.tegir.ru]
Все уже давно обновляется там, и все статьи там, и форум там, в общем - все - ТАМ! На Тегире.

Экспресс-итоги экспедиции июль 2008 БАЗ #46 25.07.2008
Новые данные привезли из экспедиции в БАЗ.

подробнее...
Поле и стационар: в чем разница #45 04.07.2008
И снова, в который раз, при разговоре с кем-то, возникает момент, когда мне приходится ссылаться на старую-старую ветку форума Влада.

[линк]

Дозиметрия #44 26.06.2008
Найден и выложен нормативный документ "ПРОВЕДЕНИЕ РАДИАЦИОННО ГИГИЕНИЧЕСКОГО ОБСЛЕДОВАНИЯ ЖИЛЫХ И ОБЩЕСТВЕННЫХ ЗДАНИЙ. МЕТОДИЧЕСКИЕ УКАЗАНИЯ. МУ 2.6.1.715-98" (УТВ. МИНЗДРАВОМ РФ 24.08.1998)
[ссылка]

Дозиметрия #43 20.06.2008
Выложена очень хорошая статья "Азы науки о радиоактивности" Лаборатории радиационного контроля МИФИ
[см. статью]


Шизофрения косит наши ряды..... #42 11.06.2008



подробнее...
Программа ИнфраС: девайс ЛС-ИР7 #41 11.06.2008
Разработан, изготовлен и прошел испытания в АЗ "Дорога смерти (МО, Лыткарино)" и "Барденево" специализированный прибор измерения длины инфракрасных пачек импульсов ЛС-ИР7.



подробнее...
По итогам работ на полевом съезде в мае 2008. #40 29.05.2008
По мере роста парка измерительного оборудования, используемого в экспедициях, все актуальнее встает проблема энергообеспечения в поле.
Поэтому с конца 2007 года техническая группа особое внимание уделяет вопросу полевых возобновляемых источников электроэнергии в виде готовых решений, применимых в экспедициях.



подробнее...
Выложен старый отчет по АЗ "Ведьмина батарейка" #39 27.05.2008

Поставил счетчик на сайт #38 23.05.2008
Поставил Майл рю. А то что это, думаю, я без счетчиков.. лень в статистику лазить каждый раз.
А счетчик майл рю (дай бог памяти - бывший апортовский Лист.рю), при всей его дубовости дает в удобоваримом виде самое нужное - динамику хитов-хостов.

(Стартовое значение поставил - мильен.
Кому нужно - и так знают, что и как смотреть, а ламеры пусть замирают в восхищении : ))))))))))

Выложено описание Радиолюбительского резака #37 17.05.2008
[link]


Выложено описание самодельных ручных буравчиков #36 17.05.2008
[link]


_новая 2008-05-16 17:08:34 #35 16.05.2008
Проведен тест-драйв качества радиосвязи на разных диапазонах в полевых условиях.

[link]

Полевой штатив #34 09.05.2008
Выложена краткая статья по переделке настольного штатива в легкий полевой.

[link]

новая #33 25.04.2008
График заряда буферного блока.
Наконец мне удалось его получить с интервалом ровно через 15 минут : )))))
Для этого в пришлось на кпк написать программу-таймер.

Заряжался он через ограничивающую ток лампу.
Хвост в конце - это когда аккумулятор зарядился, отключился, соответсвено, напряжение на входе блока стало равно 12 В - напряжению зарядки.

подробнее...
новая #32 24.04.2008
аккумуляторынй блок разряжен до 1.5В нагрузкой 15 Ом.
снята нагрузка в 16:00
Итог: автоотключения нету
После снятия нагрузки восстанавливается напряжение до 5,99 в 18:00


Очередной тест солнечной батареи и буферного аккумулятора. #31 23.04.2008
Освещение: солнечно, под прямыми лучами.

09:15
Uxx=7.50 В
10:15
Uxx=7.70 В

итого за час под нормлаьным солнцем: 0,2В на ли-ионном буферном аккумуляторе.

Статья ИК-диапазон #30 22.04.2008
Благодаря Виктору Гайдучику выложена историческая статья от Влада о ИК-диапазоне
линк

тест солнечной батареи #23 22.04.2008
Наконец-то поставил заряжаться буферный аккум от сол. батареи.
Освещение слабое, плотный облачный покров, к тому по метеоусловиям - через оконное стекло - в итоге освещение эквивалентно очень плотным тучам.

2008-04-22 09:17
Uхх=7,48 В
2008-04-22 22:00
Uxx=7.50 В

разряд буферного блока #29 21.04.2008
подробнее...
Повторно: заряд айпака от буферного аккума мини-2 #28 18.04.2008
подробнее...
заряд айпака от буферного аккума мини-2 #27 17.04.2008
подробнее...
Заработал поиск по сайту #26 16.04.2008

Начато сравнительное тестирование "крутильных" зарядок. #25 15.04.2008

Сайт переключен на новый движок. #24 15.04.2008

запись в лаб. журнале: тест подбитых аккумов #22 14.04.2008
подробнее...
на сайте: #20 14.04.2008
Сегодня полностью заработал новостной движок на сайте.

запись в лаб. журнале #21 13.04.2008
Доделал механику солнечной батареи.
подробнее...
Пелтье #19 09.04.2008
Приобрел таки 2 модуля пелтье на пробу.
Дороговатые, сволочи..
Документации - ну никакой.


новые материалы на сайте #18 04.04.2008
В раздел "тех. библиотека :: Разные статьи про обеспечение электропитания в походе"
добавлены чужие статьи
[Разрядные кривые литий-ионных аккумуляторов]
[Простой индикатор разряда батарей ]

запись в лаб. журнале #17 03.04.2008
тестовый заряд ипака от блока 4
подробнее...
Новый движок #16 19.02.2008
Сайт начинает переезжать на новый движок, который я почти дописал.

LS-Psi4 инструкция и описание. #15 15.02.2008
Публикуются инструкция и описание к LS-Psi4.
По приведенной ссылке можно взять необходимые для сборки схемы.

Закончена разработка LS-Psi4 #14 14.02.2008
Закончена разработка LS-Psi4 : простого генератора случайных чисел без микроконтроллера.

подробнее...